范文规划网 >地图 >综合分类 >

小学数学知识点总结归纳

小学数学知识点总结归纳(范例十五篇)

时间:2025-06-19 作者:范文规划网

相关推荐

小学数学知识点总结归纳 篇1

(一)乘除四则运算

1.乘法和除法互为逆运算。

2.在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

3.被除数÷除数=商 除数=被除数÷商 被除数=商×除数

(二)小数四则运算

1. 小数加法:

小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

2. 小数减法:

小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.

3. 小数乘法:

小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

4. 小数除法:

小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

5. 乘方:

求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32

(三)分数四则运算

1. 分数加法:

分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。

2. 分数减法:

分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。

3. 分数乘法:

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

4. 乘积是1的两个数叫做互为倒数。

5. 分数除法:

分数除法的意义与整数除法的意义相同。就是已知两个因数的积 与其中一个因数,求另一个因数的运算。

(四)运算定律

1. 加法交换律:

两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

2. 加法结合律:

三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

3. 乘法交换律:

两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4. 乘法结合律:

三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

小学数学知识点总结归纳 篇2

第一单元

时分秒

1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。

6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。

8、公式。(每两个相邻的时间单位之间的进率是60)

1时=60分1分=60秒

半时=30分60分=1时

60秒=1分30分=半时

第二、四单元

1、的几位数和最小的几位数

的一位数是9,最小的一位数是0.

的二位数是99,最小的二位数是10

的三位数是999,最小的三位数是100

的四位数是9999,最小的四位数是1000

的五位数是99999,最小的五位数是10000

的三位数比最小的四位数小1。

2、读数和写数(读数时写汉字写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续的两个0,都只读一个0。

3、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。

4、求一个数的近似数:

记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。的三位数比最小的四位数小1。

5、被减数是三位数的'连续退位减法的运算步骤:

①列竖式时相同数位一定要对齐;

②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

7、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

特别注意:中间是0的退位减法,例如:309-189;1000-428等

8、

⑴加法公式:加数+另一个加数=和

加法的验算:

①交换两个加数的位置再算一遍。

另一个加数+加数=和

②和另一个加数=加数

⑵减法公式:被减数-减数=差

减法的验算:

①差+减数=被减数

②减数+差=被减数

③被减数-差=减数

特别注意:验算时“验算”别忘了写!

第三单元

测量

1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

4、在计算长度时,只有相同的长度单位才能相加减。

小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

①进率是10:

1米=10分米,1分米=10厘米,

1厘米=10毫米,10分米=1米,

10厘米=1分米,10毫米=1厘米,

②进率是100:

1米=100厘米,1分米=100毫米,

100厘米=1米,100毫米=1分米

③进率是1000:

1千米=1000米,1公里==1000米,

1000米=1千米,1000米=1公里

6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

把千克换算成吨,是在数字的末尾去掉3个0。

7、相邻两个质量单位进率是1000。

1吨=1000千克1千克=1000克

1000千克=1吨1000克=1千克

第五单元

倍的认识

1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

2、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

3、求一个数的几倍是多少用乘法;这个数×倍数=这个数的几倍

第六单元

多位数乘一位数

1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

2、一个因数中间有0的乘法:

①0和任何数相乘都得0;

②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0.

3、①0和任何数相乘都得0;

②1和任何不是0的数相乘还得原来的数。

4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数

路程÷时间=速度

路程÷速度=时间

5、(关于“大约)应用题:

问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用≈)

例:387×5≈

把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950.

所以:387×5≈1950

第七单元

长方形和正方形

1、有4条直的边和4个角的封闭图形我们叫它四边形。

2、四边形的特点:有四条直的边,有四个角。

3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

4、正方形的特点:有4个直角,4条边相等。

5、长方形和正方形是特殊的平行四边形。

6、平行四边形的特点:①对边相等、对角相等。

②平行四边形容易变形。(三角形不容易变形)

7、封闭图形一周的长度,就是它的周长。

8、公式:

长方形的周长=(长+宽)×2

变式:①长方形的长=周长÷2-宽

②长方形的宽=周长÷2-长

正方形的周长=边长×4

变式:正方形的边长=周长÷4

第八单元

分数的初步认识

1、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

分子表示:其中的几份

分母表示:平均分成几份

2、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

3、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

4,比较大小的方法:

①当分子相同时,分母越小分数越大,分母越大分数越小。

②当分母相同时,分子大的分数就大,分子小的分数就小。

5、分数加减法:

①相同分母的分数加、减法的计算方法:分母不变,分子相加、减。

②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。(1可以看作所有分子分母相同的分数)

6,求一个数是另一个数的几分之几是多少的计算方法:

例:把12个圆的3/4有个圆;

分析:先找整体12;再找分母4,表示平均分成4份;求出12÷4=3,表示每一份有3个;最后找分子3,表示其中的3份,所以:3×3=9;所以把12个圆的3/4有9个圆。

小学数学知识点总结归纳 篇3

(一)数与计算

(1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题

(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。

(二)量与计量

钟面的认识(整时)。人民币的认识和简单计算。

(三)几何初步知识

长方体、正方体、圆柱和球的直观认识。

长方形、正方形、三角形和圆的直观认识。

(四)应用题

比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)

(五)实践活动

选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

小学数学知识点总结归纳 篇4

小学数学知识点全总结之一:运算定律

加法交换律 a+b=b+a

结合律 (a+b)+c=a+(b+c)

减法性质 a-b-c=a-(b+c)

a-(b-c)=a-b+c

乘法交换律 a×b=b×a

结合律 (a×b)×c=a×(b×c)

分配律 (a+b)×c=a×c+b×c

除法性质 a÷(b×c)=a÷b÷c

a÷(b÷c)=a÷b×c

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c

商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。

推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。

一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。

■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。

被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。

■利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。

如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。

小学数学知识点全总结之二:简易方程

■用字母表示数

用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。

■用字母表示数的注意事项

1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写。数与数相乘,乘号不能省略。

2、当1和任何字母相乘时,“ 1” 省略不写。

3、数字和字母相乘时,将数字写在字母前面。

■含有字母的式子及求值

求含有字母的式子的值或利用公式求值,应注意书写格式。

■等式与方程

表示相等关系的式子叫等式。

含有未知数的等式叫方程。

判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。

■方程的解和解方程

使方程左右两边相等的未知数的.值,叫方程的解。

求方程的解的过程叫解方程。

在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。

■解方程的方法

1、直接运用四则运算中各部分之间的关系去解。如x-8=12

加数+加数=和 一个加数=和-另一个加数

被减数-减数=差 减数=被减数-差 被减数=差+减数

被乘数×乘数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=除数×商

2、先把含有未知数x的项看作一个数,然后再解,如3x+20=41

先把3x看作一个数,然后再解。

3、按四则运算顺序先计算,使方程变形,然后再解。如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。

4、利用运算定律或性质,使方程变形,然后再解。如:2.2x+7.8x=20

先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。

小学数学知识点总结归纳 篇5

第一单元 小数乘法

1.小数乘整数:意义——求几个相同加数的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2.小数乘小数:意义——就是求这个数的几分之几是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

3.求近似数的方法一般有三种:

⑴四舍五入法;

⑵进一法;

⑶去尾法

4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

5.小数四则运算顺序跟整数是一样的。

6.运算定律和性质: 加法:

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

减法: 减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

乘法: 乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c

除法: 除法性质:a÷b÷c=a÷(b×c)

7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

8.小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

10.在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点

11.除法中的变化规律:

①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大,商随着扩大。

③被除数不变,除数缩小,商扩大。

12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32。

13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

14.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

15.在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

16.a×a可以写作a?a或a2,读作a的平方。 2a表示a+a。

17.方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

19.10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商。

20.所有的方程都是等式,但等式不一定都是等式。

21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】

22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积; 因为长方形面积=长×宽,所以平行四边形面积=底×高。

23.三角形面积公式推导:旋转 两个完全一样的三角形可以拼成一个平行四边形; 平行四边形的底相当于三角形的底; 平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍; 因为平行四边形面积=底×高,所以三角形面积=底×高÷2

24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍; 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

25.等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。

26.长方形框架拉成平行四边形,周长不变,面积变小。

27.组合图形:转化成已学的简单图形,通过加、减进行计算。

28.平均数=总数量÷总份数

29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

30.数不仅可以用来表示数量和顺序,还可以用来编码。

31.由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局

32.身份证号:位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。

小学数学知识点总结归纳 篇6

一、学习目标:

1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

二、学习难点:

1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

2.角的意义;射线、直线和线段三者之间的关系;

3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;

4.初步认识平行线与垂线;理解永不相交的含义;fgH888.CoM

5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

三、知识点概括总结:

1.亿以内的数的认识:

十万:10个一万;

一百万:10个十万;

一千万:10个一百万;

一亿:10个一千万。

2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

3.数级分类:

(1)四位分级法:即以四位数为一个数级的分级方法。

我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

(2)三位分级法:即以三位数为一个数级的分级方法。

这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

这就说明计数单位和数位的概念是不同的。

5.数的产生:

阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

小学数学知识点总结归纳 篇7

教学内容:人教版小学数学教材五年级上册第11页例6及“做一做”,练习三第1~3题。

教学目标:

1.使学生在比较熟练地掌握了小数乘法计算方法的基础上,能根据实际需要和题目要求正确地用“四舍五入”法求积的近似数。

2.培养学生灵活、合理地运用求积的近似数的方法解决实际问题的意识和能力。

3.使学生进一步体会数学知识之间、数学知识与现实生活之间的联系,提高学习数学的信心和兴趣。

教学重点:正确地用“四舍五入”法求积是小数时的近似数。

教学难点:初步理解求积的近似数往往是“实际应用”的需要。

教学过程:

一、以旧引新,激活经验

1.计算下面各题。

1.5×24      0.37×2.6      4.02×8.3

(1)学生独立完成,指名演板,集体订正。

(2)说一说小数乘法应该怎样进行计算?

2.求下面各小数的近似数。

保留一位小数:3.12;5.549;0.3814。

保留两位小数:4.036;7.7963;8.42378。

(1)独立完成,集体反馈。

(2)7.7963的近似数为什么是7.80?

(3)我们刚才是用什么方法来求小数的近似数的?用这种方法求小数的近似数应该注意什么?

【设计意图:由于本课学习内容涉及小数乘法计算和用“四舍五入”法求近似数的应用,而学生对“四舍五入”法已经有较长时间没有接触了,所以通过简单复习,帮助学生唤起对已学知识,特别是对“四舍五入”法的记忆,为后续学习做好知识准备。】

二、创设情境,自主探究

(一)谈话导入,揭示课题

1.谈话导入:在实际应用中,小数乘法的积往往不需要保留很多的小数位数,这时可以根据需要,按“四舍五入”法保留一定的小数位数,求出积的近似数。(ppt课件呈现谈话内容。)

2.揭示课题:积的近似数。(板书课题:积的近似数)

(二)了解信息,解决问题

1.出示情境图(ppt课件)。

小狗正在做什么?人们训练小狗缉毒是利用了小狗的什么特点?小狗嗅觉灵敏与嗅觉细胞的数量多少有很大关系,下面请看一个与之相关的实际问题。

2.出示例6(ppt课件)。

(1)题目中有哪些数学信息?提出了什么问题?

(2)你会解答这个问题吗?怎样解答?

(3)题目中对解答这个问题有什么特殊要求?

(4)这里的“得数保留一位小数”表示要求出积的近似数,那么条件中的“0.049亿”是近似数还是准确数呢?为什么不用准确数?

3.学生独立尝试,指名两名学生演板。

4.组织学生观察、评价黑板上两名演板同学的解答过程。

5.组织学生交流、反馈自己的解答过程。(教师适时演示ppt课件。)

(1)你是怎样解决这个问题的?

(2)解决这个问题时需要注意什么?

(3)你是怎样将“得数保留一位小数”的?

(4)写横式的得数时要注意什么?

【设计意图:本环节的教学除了通过例题中对得数的要求来揭示求“积的近似数”的教学内容外,还有意识地引导学生判断已知条件中“0.049亿”是近似数还是准确数?为什么不用准确数?进一步让学生体会在实际应用中有时准确数既无必要又不可能,而用近似数就可以了。至于例题的具体解答过程,难度并不大,放手让学生自己去解决,教师只是在重点处有针对性地引导学生交流、反馈,突出用“四舍五入”法求积的近似数的方法和过程,强调书写时应注意的细节。】

三、巩固练习,强化认知

(一)求“积的近似数”的基本练习

1.第11页“做一做”第1题。

(1)出示题目(ppt课件)。

1.计算下面各题。

0.8×0.9  (得数保留一位小数)

1.7×0.45 (得数保留两位小数)

(2)全班齐练,指名两人演板。

(3)集体订正。

2.补充题。

(1)出示题目(ppt课件)。

补充题:

将“1.35×0.96”的积用“四舍五入”法保留两位

小数,所得的近似数是(    )。

a.1.29       b.1.30       c.0.13

(2)学生独立思考,用自己的方法进行判断和选择。

(3)组织学生集体交流自己是怎样做出判断和选择的。(教师强调:用“四舍五入”法按要求保留小数位数时,所求得近似数末尾的“0”必须保留,不能随意去掉。)

(二)求“积的近似数”的实际应用

1.第11页“做一做”第2题。

(1)出示问题(ppt课件):一种大米的价格是每千克3.85元,买2.5 kg应付多少钱?

(2)全班齐练,教师巡视。(选择两名同学演板,一人的得数是准确数,一人的得数是近似数。)

(3)集体订正,追问质疑。

质疑一(对得数是准确数的同学):这节课学习的是求“积的近似数”,你为什么用准确数表示求得的积?

质疑二(对得数是近似数的同学):这一题的问题没有保留几位小数的要求,你为什么用近似数表示求得的积?

2.集体讨论。

(1)再遇到这样的实际问题,我们应该怎样处理?

(2)通过这道题的解答,你感受到了什么?(在实际应用中,应该根据需要按“四舍五入”法保留一定的小数位数,求出积的近似数。)

【设计意图:用“做一做”的第1题和补充的选择题来巩固求积的近似数的方法。而在“做一做”的第2题中,不同的学生可能会有不同的处理方式,如:有的求的是积的准确值,有的求的是积的近似数,甚至求出的近似数也可能不完全相同,可能保留的是两位小数,也可能保留的是一位小数,还有“舍”与“入”的问题。教师应充分利用这些生成的教学资源,及时进行评价,引导学生在比较和争论中积极思考,让这些丰富的资源引发出精彩、自然的认知冲突,让学生从实际例子中体会求积的近似数往往是“实际应用”的需要。】

四、全课总结,畅谈收获

谈谈这节课你有哪些收获?

五、作业练习

1.课堂作业:练习三第1题第(2)小题、第3题。

2.家庭作业:练习三第1题第(1)小题、第2题。

小学数学知识点总结归纳 篇8

一、学习目标:

1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;

2.会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;

3.理解用字母表示数的意义和作用;

4.理解简易方程的意思及其解法;

5.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。

二、学习难点:

1.能正确进行乘号的简写,略写;小数乘法的计算法则;

2.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足;

3.除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;

4.构建初步的空间想象力;

5.用字母表示数的意义和作用;

6.多边形面积的计算。

三、知识点概念总结:

1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

2.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

3.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

4.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

5.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

7.数的互化:

(1)小数化成分数

原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数

用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数

一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

(4)小数化成百分数

只要把小数点向右移动两位,同时在后面添上百分号。

(5)百分数化成小数

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

(6)分数化成百分数

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(7)百分数化成小数

先把百分数改写成分数,能约分的要约成最简分数。

8.小数的分类:

(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……

(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。

9.循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。

10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

12.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。如果两个方程的解相同,那么这两个方程叫做同解方程。

13.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

14.解方程:解方程,求方程的解的过程叫做解方程。

15.列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。

16.列方程解答应用题的步骤:

(1)弄清题意,确定未知数并用x表示;

(2)找出题中的数量之间的相等关系;

(3)列方程,解方程;

(4)检查或验算,写出答案。

17.列方程解应用题的方法:

(1)综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

(2)分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

18.列方程解应用题的范围:

小学范围内常用方程解的应用题:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

19.平行四边形的面积公式:

底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah

20.三角形面积公式:

S△=1/2_ah(a是三角形的底,h是底所对应的高)

21.梯形面积公式:

(1)梯形的面积公式:(上底+下底)×高÷2.

用字母表示:(a+b)×h÷2

(2)另一计算公式:中位线×高

用字母表示:l·h

(3)对角线互相垂直的梯形:对角线×对角线÷2.

小学数学知识点总结归纳 篇9

研修为教师的教育教学水平和业务能力以及专业发展创造了条件。做为一名普通的数学教师,对于课程改革的基本理念早已不陌生,然而能够深入进去地去对新课程新教材做更深入的研究、探索、思考、挖掘似乎却不多,而这样的学习似乎正好为我们去挖掘去思考新课程新教材中更深入的内容提供了机会。这次远程研修让我有幸与专家和各地的数学精英们交流,面对每次探讨的主题,大家畅所欲言,各抒已见,浓浓的学习氛围不言而露,尽管不曾谋面,但远程研修拉近了我们的距离。经过这次研修,我深深的感觉到:教师不仅要具备高尚的师德,还要有渊博的学识,这是我们从事教育教学工作的基础。通过对六个专题的学习,收获的确不小,同时也给自己的教学带来很多新思考,下面就对本次培训学习作以总结:

一、通过学习,解决了我在实际教学中遇到的很多疑难问题,

如:解决问题教学如何创设切近学生生活实际的情境,合作学习如何做到恰当的时间利用等。

二、通过这次研修,在我的头脑中进一步确立了转变学生的学习方式,

转变教师的教学方式,转变教育教学理念的重要性,使自己坚信只要坚持搞好素质教育,坚持以学生的发展为核心,以教师的专业发展为支撑,进一步关注学生的主体地位,就可以实现学生的素养发展和教学成绩的双赢。感受最深的是建模思想。在解决数学问题时,让学生学会建构“数学模型”,要经过一定的形成过程,应从具体到抽象,抓住某事物(研究对象)的一个(类)本质属性,舍弃非本质属性,获得较原事物更为一般的概念模式或符号等。一个较为完善的数学模型构建过程为:感知模型→建立模型→强化模型→形成模型。它不是一个单一的程式,应是不断循环、反复深化的过程。

新课程改革的成功之处在于更多地关注学生的知识起点、生活经验、兴趣爱好,让学生在实际的情境中得到提升,为学生更多地再创造数学获得绝好的机会。因此,创设问题情境是模型构建的首要环节。

1、创设充满趣味或情趣的问题情境

根据儿童的心理特点,童话故事、富有童趣的游戏最能激起学生的学习兴趣,因此,创设充满趣味或情趣的问题情境便于把学生引入到奇妙的数学世界中。

2、创设与现实生活相联系的问题情境

《数学课程标准》指出:学生的数学学习内容应当是现实的、有意义的,富有挑战性的问题情境要注意与学生的现实生活相联系,让学生在现实情境中体验和理解数学。

数学模型的建构过程其实是数学知识的再创造过程,有层次地创设问题情境,让静态的数学知识通过演示、操作、实验逐步把学生的思维引向深入,凸现问题的本质。

建立数学模型的过程必须要借助思维活动,来探究具体事物的本质及其关系,最终以符号、关系式、概念模型等形式将其间规律揭示出来。

1、在比较与分类中建立模型

比较与分类有利于对数学知识或数学材料的共同点与不同点有明确的判断,通常用辨析的方式;最终明确彼此之间存在的同一性与相似性,以逐渐明晰其背后隐藏着的共同模型。 例如在教学《乘法的初步认识》一课,先出示下题:8+817+18+199+9+9+922+32+13+1115+2435+35+3543+55+33+9114+14+14+14。让学生把上面的几道算式进行分类。学生根据加数的特点,很快地把它们分成了两类,然后指着加数相同的这一类改写成乘法算式,并说明理由,从而概括出乘法的意义。

2、在抽象与概括中建立模型

抽象是从许多数学事实或数学现象中舍去个别的、非本质的属性,从而概栝出问题的本质属性。抽象与概括能力的高低决定了学生解决问题的水平。

2、在抽象与概括中建立模型

抽象是从许多数学事实或数学现象中舍去个别的、非本质的属性,从而概栝出问题的本质属性。抽象与概括能力的高低决定了学生解决问题的水平。

3、在猜想与验证中建立模型

猜想是对研究的数学对象或数学问题做出符合一定规律或事实的推测性想象。在你证明一个数学定理之前,你必须猜想到这个定理,在你搞清楚证明细节之前,你必须猜出证明的主导思想。

如教学《商不变的性质》时,可引导学生先猜想一下:被除数和除数怎样变化,商不变呢?学生可能提出:被除数和除数同时加上、减去、乘以或除以相同的数,商不变等多种猜想。再组织学生以小组为单位探究,运用举例子的方法验证各自的猜想是否正确。学生在验证过程中,会逐步找到商不变的规律,并且动态生成了:乘以或除以相同的数,这样数不能是零,因为零不能作除数。这样一个学习过程由提出猜想——进行验证——自我反思——建立模型,它不仅是一个主动学习的过程,更是发现学习、创造性学习的过程。

(三)抓住问题本质,拓展知识外延,强化数学模型

当学生初步建立数学模型后,学生对模型的应用还不是十分灵活,需要继续扩展知识的外延,变化数据,以不同的表达来分析所得的模型是否稳定。

(四)沟通内在联系,重组认知结构,形成数学模型

三、进一步加强对教学工作的反思。加强教学反思,认真听取学生的意见和听课教师的评课建议,及时修改、补充、调整、完善教学设计和教学策略,这对教师的专业发展和能力提高是非常必要的。我们要坚持写课后反思、阶段性反思、学期后反思和学年反思,在反思中成长、在反思中进步。

总之,回顾这次研修学习,可谓收获颇丰,收获的是一名专业教师专业成长所必不可少的基本素养。对于这样的学习来说,也许我们付出的是忙碌,但我们收获的却是提高,是自己基本素质的提高,更重要的是这个平台给我们提供了无限广阔的交流空间,我们在课程改革的实践中有许多问题,困惑、思考、收获很难有机会倾情表达,在这里我们可以通过研修平台共同与同仁们,一起进行交流、研讨。同行们身上的闪光点也会时刻鼓励着我,不断进取,永不停息。

小学数学知识点总结归纳 篇10

教学目标:

1、进一步掌握乘法的运算定律;通过类比、比较掌握小数乘法的简算方法。

2、感受数学来源于生活、服务于生活,培养学生自我尝试、自我探究的。

3、激发学生热爱生活,热爱家乡的情感。

教学重点:学会小数乘法的简便运算。

难点:小数乘法简便运算应用。

教学准备:多媒体课件

教学过程:

(一)复习准备

1、出示以下三组算式

7×12=12×□

(7×25)×4=7×(25×□)

24×5+□×5=(□+36)×5

(1)、快速口答,并说出你是怎样想的?

(2)、归纳三个定律

2、出示以下三组算式比较大小

0.7×1.2○1.2×0.7

(0.7×2.5)×0.4○0.7×(2.5×0.4)

2.4×0.5+3.6×5○(2.4+3.6)×0.5

(1)、你怎么判断的?

(2)、说明整数乘法的定律同样适应于小数。

设计意图:通过简单的填数、比较大小,让学生较轻松地进入学习的状态中,并对乘法的运算定律做一个复习巩固,为后面的新授做一个铺垫准备。

(二)探究新知

1、创设情景:超市购物

问题:(1)、你们平时都到什么地方购物啊?

(2)、出示购物电脑小票,你们知道是什么吗?有什么用?

(3)、有几份电脑小票上的总价不清楚了,希望你们帮我在最短的时间,用最简单的方法算出来。

(设计两种电脑小票)

序号物品名称单价数量总价

1苹果12.5元/千克3.2千克

12.5×3.212.5×3.2

=12.5×(8×0.4)=12.5×(0.8×4)

=12.5×8×0.4=12.5×0.8×4

=100×0.4=10×4

=40=40

拆数:

序号物品名称单价数量总价

1花生4.6元/千克8.71千克

2瓜子5.4元/千克8.71千克

4.6×8.71+5.4×8.71

=(4.6+5.4)×8.71

=10×8.71

=87.1

2、请你利用最快速、最简单的的方法帮老师把电脑小票中的总价填写完整。(要求:列式并把计算过程写清楚)

3、学生独立思考计算,指名板演。

4、反馈、置疑

5、师生共同计算方法设计意图:通过创设购物的情景,让学生较愉悦主动地开始学习新知。并通过这样的情景让学生感受到数学知识来源于生活,是与我们紧密联系在一起的。

(三)巩固练习

1、应用定律填空

7.5×1.6=1.6○□

1.25×0.7×0.8=(□○□)×□

2.5×0.7+0.3×2.5=(□○□)×□

50×(2-0.2)=□×□○□×□

2、判断改错

(2.5+0.25)×0.4(50×12.5)×0.8

=2.5×0.4+0.25 =50×0.8+12.5×0.8

=1+0.25 =40+10

=1.25 =50

3、拓展题

(三星题)

0.25×4.78×4

7.6×5.3+7.6×3.7

(四星题)

0.25×0.32×0.125

78.6×99+78.6

(五星题)

1.4×0.99

21×4.3+57×2.1

设计意图:由浅入深设计习题,力求全面反馈练习,同时也使练习具有层次性,针对性,能适应全体学生

教后反思:

小学数学知识点总结归纳 篇11

【第一单元:数一数、比多少】

1、数一数

数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

2、比多少

同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

比较两种物体的多或少时,可以用一一对应的方法。

【第二单元:位置】

1、认识上、下

体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

2、认识前、后

体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

同一物体,相对于不同的参照物,前后位置关系也会发生变化。

从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

3、认识左、右

以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

【第三单元:1-5的认识和加减法】

一、1——5的认识

1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。

2、1—5各数的数序

从前往后数:1、2、3、4、5。

从后往前数:5、4、3、2、1。

3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。

二、比大小

1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。

2、填“>”或“<”时,开口对大数,尖角对小数。

三、第几

1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。

2、区分“几个”和“第几”

“几个”表示物体的多少,而“第几”只表示其中的一个物体。

四、分与合

数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1。

把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。

五、加法

1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。

2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。

六、减法

1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。

2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。

七、0

1、0的意义:0表示一个物体也没有,也表示起点。

2、0的读法:0读作:零

3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。

4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0。

如:0+8=8、9-0=9、4-4=0

【第四单元:认识图形】

1、长方体的特征:长长方方的,有6个平平的面,面有大有小。

2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。

3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。

4、球的特征:圆圆的,很光滑,它的'表面是曲面。放在桌子上能向任意方向滚动。

5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。

【第五单元:6-10的认识和加减法】

一、6—10的认识:

1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

2、10以内数的顺序:

(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

3、比较大小:按照数的顺序,后面的数总是比前面的数大。

4、序数含义:用来表示物体的次序,即第几个。

5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。

记忆数的组成时,可由一组数想到调换位置的另一组。

二、6—10的加减法

1、10以内加减法的计算方法:根据数的组成来计算。

2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

三、连加连减

1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

四、加减混合

加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

【第六单元:11-20各数的认识】

1、数数:根据物体的个数,可以用11—20各数来表示。

2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、

3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。

4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。

5、数位:从右边起第一位是个位,第二位是十位。

6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。

7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2。有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。

8、十加几、十几加几与相应的减法

(1)10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。

如:10+5=15、17-7=10、18-10=8

(2)十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。

(3)加减法的各部分名称:

在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。

在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。

9、解决问题

求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。

【第七单元:认识钟表】

1、认识钟面

钟面:钟面上有12个数,有时针和分针。

分针:钟面上又细又长的指针叫分针。

时针:钟面上又粗又短的指针叫时针。

2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。

3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。

4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00。

【第八单元:20以内的进位加法】

1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。

利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。

2、8、7、6加几的计算方法:

(1)点数;

(2)接着数;

(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。

3、5、4、3、2加几的计算方法:

(1)“拆大数、凑小数”。

(2)“拆小数、凑大数”。

4、解决问题

(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。

(2)求总数的实际问题,用加法计算。

小学数学知识点总结归纳 篇12

主要内容

求一个数比另一个数多(少)百分之几、纳税问题

学习目标

1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

3、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。

4、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

5、培养和解决简单的实际问题的能力,体会生活中处处有数学。

考点分析

1、一个数比另一个数多(少)百分之几 = 一个数比另一个数多(少)的量÷另一个数。

2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额 = 收入 × 税率

点评:想一想,在分数乘法应用题中的最基本的数量关系式:“单位1 × 分率 = 分率对应的量”,如果和百分数应用题结合起来,求一种量比另一种量多(少)百分之几,实际上就是求分率。就用“多(少)的量 ÷ 单位1”。

例3、(难点突破)

一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%

分析与解:苹果比梨重20%,表示苹果比梨重的部分占梨的20%,把梨的质量看作单位“1”;而梨比苹果轻20%则表示梨比苹果轻的部分占苹果的20%,把苹果的质量看作单位“1”,两个单位“1”不同,切忌将两个问题混为一谈。一筐苹果比一筐梨重20%,是把梨看作单位“1”,梨有100份,苹果就是100 + 20 = 120份;一筐梨比一筐苹果轻百分之几 = 一筐梨比一筐苹果轻的部分 ÷ 苹果 = (120 - 100)÷ 120≈16.7%

答:一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻16.7%

点评:在求一个数比另一个数多(少)百分之几的百分数应用题中,关键还是要找准单位“1”的量。从结论可以得出“一个数比另一个数多百分之几,另一个数就比一个数少百分之几。”这句话是错的。为什么呢?把两个百分之几比较一下,就可以得出这两个百分之几对应的量是一个数比另一个数多的量或另一个数比一个数少的量,而这两种说法是相同的,也就表示的是同一个量;而单位“1”一个是梨,一个是苹果,所以这两个百分之几是不可能相等的。

例4、(考点透视)

一种电子产品,原价每台5000元,现在降低到3000元。降价百分之几?

分析与解:降低到3000元,即现价为3000元,说明降低了20__元。求降价百分之几,就是求降低的价格占原价的百分之几。

5000 – 3000 = 20__(元)

20__ ÷ 5000 = 40%

答:降价40﹪。

例7、(和应纳税额有关的简单实际问题)

王叔叔买了一辆价值16000元的摩托车。按规定,买摩托车要缴纳10%的车辆购置税。王叔叔买这辆摩托车一共要花多少钱?

分析与解:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。

方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)

方法2:16000 ×(1 + 10%) = 16000 ×1.1 = 17600(元)

答:王叔叔买这辆摩托车一共要花17600元钱。

例8、扬州某风景区20__年“十一”黄金周接待游客9万人次,门票收入达270

万元。按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。

分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%

答:“十一”黄金周期间应缴纳营业税13.5万元。

模拟试题一

一、填空。

1、篮球个数是足球的125%,篮球比足球多( )%,足球个数是篮球的( )%,足球个数比篮球少( )%。

2、排球个数比篮球多18%,排球个数相当于篮球的( )%。

3、足球个数比篮球少20%。排球个数比篮球多18%,( )球个数最多,( )球个数最少。

4、果园里种了60棵果树,其中36棵是苹果树。苹果树占总棵数的( )%,其余的果树占总棵数的( )%。

5、女生人数占全班的百分之几 = ( )÷ ( )

杨树的棵数比柏树多百分之几 = ( )÷ ( )

实际节约了百分之几 = ( )÷ ( )

比计划超产了百分之几 = ( )÷ ( )

6、20的40%是( ),36的10%是( ),50千克的60%是( )千克,800米的25%是( )米。

7、进口价a元的一批货物,税率和运费都是货物价值的10%,这批货物的成本是( )元。

二、解决实际问题

1、白兔有25只,灰兔有30只。灰兔比白兔多百分之几?

2、四美食盐厂上月计划生产食盐450吨,实际生产了480吨。实际比计划多生产了百分之几?

3、小明家八月份用电80千瓦时,小亮家比小明家节约10千瓦时,小亮家比小明家八月份节约用电百分之几?

4、某化肥厂9月份实际生产化肥5000吨,比计划超产500吨。比计划超产百分之几?

5、蓝天帽业厂去年收入总额达900万元,按国家的税率规定,应缴纳17%的增值税。一共要缴纳多少万元的增值税?

6、爸爸买了一辆价值12万元的家用轿车。按规定需缴纳10%的车辆购置税。爸爸买这辆车共需花多少钱?

小学数学知识点总结归纳 篇13

教学内容:人教版小学数学教材五年级上册第2~3页例1、例2及“做一做”,练习一第1~5题。

教学目标:

1.使学生理解小数乘整数的算理,掌握小数乘整数的一般方法,会比较熟练地进行笔算。

2.使学生经历将小数乘整数转化为整数乘整数的过程,自主探索小数乘整数计算方法的过程,渗透转化的数学思想,培养简单的逻辑推理能力。

3.使学生体会小数乘法在实际生活中的应用,感受数学源于生活,生活需要数学,形成积极的学习态度。

教学重点:掌握小数乘整数的一般计算方法。

教学难点:理解小数乘整数的算理。

教学准备:课件。

教学过程:

一、情境引入,提出问题

(一)课件呈现,寻找信息

1.课件呈现“放风筝”的情境以及各种不同形状的风筝。

2.课件呈现“买风筝”的情境(例1的主题图),画面上醒目地显示四种形状各异、价格不同的风筝。

3.设问:从图中你能看出哪些数学信息?

(二)提出问题,揭示课题

1.这节课我们就一起先来解决“买3个蝴蝶风筝多少钱”的问题,你能列出算式吗?(教师板书或ppt课件呈现:3.5×3=)

2.追问:这个算式和我们以前学过的算式有什么不同呢?

3.引导:今天我们就来学习小数乘整数。(板书课题:小数乘整数)

二、自主尝试,感悟算理

(一)感知算理

1.算一算:3.5×3,可以怎样计算?

给足时间,让每一位学生根据自己的知识和经验独立计算出买3个蝴蝶风筝所需的钱数。教师巡视,注意发现学生中的不同计算思路。

2.说一说:你是怎样计算的?

学生的计算思路可能有:用加法进行计算;改写为复名数进行计算;化“元”为“角”进行计算等。

(二)重点分析、研讨化“元”为“角”算法的算理

1.组织全班学生对上述多种不同解法逐一进行分析、评价和充分肯定。

2.引导学生着重分析化“元”为“角”的计算方法。

(1)师:上述几种算法中,你认为哪种算法比较简单?这种算法中的关键是什么?

(2)学生分析、对比、讨论后,引导学生用简洁的话总结、概括:先把3.5元转化为35角,再计算35角×3,最后将结果105角转化成10.5元。

(3)教师边小结边适时板书(或ppt课件动态呈现)如下竖式计算过程:

(4)小结:刚才我们在解决“买3个蝴蝶风筝多少钱”的问题时,想到了各种不同的计算方法。我们发现以“元”作单位的小数乘整数,可以转化成以“角”(或“分”)作单位的整数乘整数来进行计算。

【设计意图:依托现实情境,让学生利用已有的知识经验,用自己理解的方法自主解决问题。在充分肯定学生的其他合理方法之后,着重分析和评价化“元”为“角”的算法,引导学生总结、概括这种算法的思考过程,体会小数乘法和整数乘法的联系,感受小数乘整数还可以转化成整数乘整数进行计算,初步感悟小数乘整数的算理和算法,培养学生的数学思维能力。】

(三)巩固化“元”为“角”的计算方法

1.第2页“做一做”第1题。

(1)学生独立完成,教师指名演板。

(2)重点评价“把4.6元看作46角”进行计算的方法。

2.第2页“做一做”第2题。

(1)学生独立完成。

(2)组织学生交流解决问题的思路和方法(主要关注下面两种方法)。

方法一:先算出具体的钱数6.4元×7=44.8元,再与40元进行比较,做出判断。

方法二:直接通过估算解决,一个燕子风筝的价格是6.4元,超过了6元,买7个就超过了42元,所以40元不够。

(3)拓展:50元够吗?

三、运用转化,探究算法

(一)动态呈现小数乘整数的过程

1.出示算式0.72×5=?,提问:“0.72不是钱数,怎样计算?”

2.让学生独立思考,再引导学生提出:“能不能转化成整数来计算?”

3.学生尝试列竖式计算。(教师巡视,了解学生的计算方法。)

4.小组交流计算方法。

5.学生全班集体交流转化过程和计算方法,教师适时板演(或pp课件演示)乘法竖式计算过程,帮助学生理解算理算法。

(教师重点引导学生理解三点:怎样把因数0.72转化成整数?乘得的积应如何处理?积末尾的“0”如何处理?从而使学生更好地理解算理。)

由于因数0.72化成整数72必须“×100”,所以要使积不变,积360应“÷100”。

(二)将乘得的积化成最简小数

请学生观察乘得的积“3.60”,提问:3.60是最简小数吗?(不是!)提醒学生,乘得的积如果不是最简小数,可以根据小数的基本性质将积中小数末尾的0去掉。

(三)小结小数乘整数的一般方法

1.引导学生回顾3.5×3、0.72×5的计算过程。

2.提问:“想一想,在计算小数乘整数时,你先做什么?再做什么? 最后又做什么?”

3.引导学生在理解的基础上归纳小数乘整数的一般方法:

(1)先将小数转化为整数;

(2)按整数乘法算出积;

(3)再确定积的小数点位置。(因数有几位小数,就从积的右边起数出几位,点上小数点。若积的末尾有“0”,末尾的“0”可以去掉。)

四、拓展应用,巩固新知

(一)专项练习

1.小数乘整数与整数乘整数的对比。(第3页“做一做”第1题)

(1)引导学生审题,明确题目要求,学生独立完成。

(2)组织学生交流、讨论,归纳小数乘整数与整数乘整数的不同:小数乘整数中有一个因数是小数,整数乘整数中两个因数都是整数;小数乘整数的积中,若小数末尾有0,这个0可以去掉,但整数乘整数的积末尾的0不能去掉。

2.确定积的小数点。(第3页“做一做”第2题)

(1)学生独立完成。

(2)组织学生交流:你是怎样确定积的小数点的位置的?积末尾的0是怎样处理的?

(二)计算练习(第3页“做一做”第3题)

1.学生独立完成,教师巡视,了解学生计算情况。

2.组织学生交流,着重交流第二个因数是两位数的两道小数乘法计算题(2.3×12和3.13×53)是怎样计算的。

(三)趣味练习(智慧岛)

1.小狗登城堡。

2.小金鱼戏水。

3.小蜜蜂采蜜。

(四)应用练习

1.练习一第3题。

(1)引导学生正确用合适的方法估计自己家到学校的路程。如:用步测的方法估计,知道自己的步长约为0.6 m,从自己家到学校约走多少步,用步长0.6 m乘走的步数,就得到自己家到学校的大致路程。

(2)通过计算自己每天、每周上学要走的路程,巩固小数乘整数的计算方法,加深对一千米有多长的具体的感受。

2.练习一第4题。

(1)第4题是根据第一列的积,写出其他各列的积。

(2)本题利用表格的形式,让学生在按从左到右的顺序逐列写出积的过程中,自觉地应用积的变化规律,并打通小数乘法与整数乘法之间的联系,体会到小数乘法与整数乘法有什么相同和不同。

五、课堂总结,深化新知

这节课我们学到了什么?你是怎么学会的?

六、课外作业

1.练习一第1、5题。

2.练习一第2题,是联系学生的主要学习资源——课本进行的计算活动,应让学生先自己去了解五门学科课本的单价,然后再计算、填空。

小学数学知识点总结归纳 篇14

【时分秒】

1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。

2、钟面上有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。

3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

6、公式(每两个相邻的时间单位之间的进率是60):

1时=60分

1分=60秒

7、常用的时间单位:时、分、秒、年、月、日、世纪等。

1世纪=100年

1年=12个月

【分数的初步认识】

1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

3、比较大小的方法:

①分子相同,分母小的分数反而大,分母大的分数反而小。

②分母相同,分子大的分数就大,分子小的分数就小。

4、分数加减法:

①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。

②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。

5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

【测量】

1、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。

2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

3、在计算长度时,只有相同的长度单位才能相加减。

4、长度单位的关系式有:

①进率是10:

1米=10分米

1分米=10厘米

1厘米=10毫米

②进率是100:

1米=100厘米

1分米=100毫米

③进率是1000:

1千米=1000米

1公里==1000米

5、当我们表示物体有多重时,通常要用到质量单位。在生活中,称比较轻的物品质量,可以用克做单位;称一般物品的质量,常用千克做单位;计量较重或大物品的质量,通常用吨做单位。

6、相邻两个质量单位的进率是1000。

1吨=1000千克

1千克=1000克

【万以内的加法和减法】

1、读数和写数:

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续两个0,都只读一个0。

2、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数位上的数,如果位上的数相同,就比较下一位,以此类推。

3、求一个数的近似数:看数的后面一位,如果是0~4就用四舍法,如果是5~9就用五入法。

4、被减数是三位数的连续退位减法的运算步骤:

①列竖式时相同数位一定要对齐;

②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。

【倍的认识】

1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数。

3、求一个数的几倍是多少的计算方法:这个数×倍数=这个数的几倍。

【长方形和正方形】

1、有4条直的边和4个角封闭的图形叫做四边形。

2、四边形的特点:有四条直的边,有四个角。

3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

4、正方形的特点:有4个直角,4条边相等。

5、长方形和正方形是特殊的平行四边形。

6、平行四边形的特点:

①对边相等、对角相等;

②平行四边形容易变形。(三角形不容易变形)

7、封闭图形一周的长度,就是它的周长。

8、公式:

长方形的周长=(长+宽)×2=长×2+宽×2

长方形的长=周长÷2—宽

长方形的宽=周长÷2—长

正方形的周长=边长×4

正方形的边长=周长÷4

【多位数乘一位数】

1、估算:先求出多位数的近似数,再进行计算,如497×7≈3500。

2、

①0和任何数相乘都得0;

②1和任何不是0的数相乘还得原来的数。

3、三位数乘一位数,积有可能是三位数,也有可能是四位数。

4、多位数乘一位数(进位)的笔算方法:

相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

5、一个因数中间有0的乘法:

①0和任何数相乘都得0;

②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面的那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

7、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

8、减法的验算方法:

①用被减数减去差,看结果是不是等于减数;

②用差加减数,看结果是不是等于被减数。

9、加法的验算方法:

①交换两个加数的位置再算一遍;

②用和减一个加数,看结果是不是等于另一个加数。

学习困难的原因

1、学习自觉性较差

初中生学习自觉性较差,缺少解题的积极性,解题时不注重步骤、过程。

2、学习意志薄弱

数学的逻辑性和抽象性很强,知识间联系紧密,对学生的灵活应用能力,分析能力要求很强。如果学生对前面所学的知识掌握不好或未理解的话,就会直接影响深一层次内容的学习,造成知识脱节,跟不上集体学习的进程,在加在自身的毅力薄弱。其结果往往就会产生厌学情绪,放弃数学的学习。

3、无兴趣学习或兴趣低

一部分学生一开始就没有学好数学,导致基础不好,久而久之导致恶性循环;还有些学生认为学数学没用,选择放弃选读,因此成绩变得连“过得去”也难以维持。

4、没有养成良好的数学学习习惯

有些学生边学边玩,注意力不集中,或是思维单一,不能横向思考或纵深思考;又或者不听不记,思维懒惰,粗心大意、马虎等等都是造成错误率高的重要原因。

所以同学们要注意自己是否存在以上问题,要想办法及时解决。

数学的概念

数学概念是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。

小学数学知识点总结归纳 篇15

为落实国家“双减政策”,切实减轻学生的课业负担,让孩子们快乐学习,健康成长,全面发展,我们一小英语教研组教师努力提高自身素质,钻研教学,改进教学方法,创新设计英语作业,从而提高学生的学习效率。

一、提高课堂教学质量,加强作业设计指导

我们英语组老师认真学习国家双减政策,努力践行作业“五项管理”,并抓好课堂主阵地,上好每一节常态课,同时将作业设计纳入每周的教研例会内容,共同探讨“如何提高课堂教学质量?如何设计有效的英语作业?如何落实双减政策等?”集体讨论并设计符合学生年龄特点和学习规律、体现素质教育导向的基础性作业。

二、优化作业设计,分层布置作业

我们英语组老师认为作业应基于学生英语学习水平的差异性,应设计不同层次的、有选择性的、能满足不同层次学生需要的作业,让不同水平的学生都能完成在其能力范围内的作业,从而巩固基础知识,并发展一定的能力。

(1)找寻“生活中的英语”,提高实践能力

即给学生布置“找”的作业,让学生联系生活实际,从生活中寻找英语,引导学生发现生活中所见的英文,如广告牌:hamburger(汉堡包),pizza比萨饼,Nike(耐克),摄氏度摄氏度TV(中央电视台)等,引导学生随时留意观察周围生活,收集英语有关的资料,这样做不但可以提高学习兴趣,增长知识,还能培养学生自觉学习意识和细心观察生活的良好习惯。

(2)设置创编型作业,激发学习兴趣

让学生绘制英语手抄报,或根据课文的对话、故事、编曲创作等。冀教版英语为学生们提供了大量的chant和song等。课后,我们给孩子们布置如“歌词新作”、“故事新编”等类作业,学生编写的歌谣或故事有时候显得很稚嫩,但是他们在课前朗读展示自己编出来的作品时,就会非常有成就感,也更有兴趣。

三、提高课后服务水平,满足学生个性化需求

我们组员努力提升课后服务水平,丰富课后服务内容,激发学生学习兴趣,让学生全面发展,同时合理设计,完善作业落实,控制好作业数量,保证课后服务时间,充分利用资源优势,提升学生的思维和能力,在校内满足学生多样化学习需求,最大化的帮助孩子提升自我,提高学习效率。

总之,在英语作业设计中,教师不仅要关注不同层次的学生,还要研究作业布置的趣味性、有效性、创新性,努力使作业成为英语学习的“亮点”,不再成为学生学习的负担,让所有学生能轻松的学习英语,真正达到预期的教学效果。

精选阅读

本文来源:http://www.fgh888.com/zonghe/26528.html

  • w
    初一数学知识点上册(合集十三篇)

    发布时间:2025-05-31

    初一数学知识点上册 篇1相反数1.相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。2.相反数的性质与判定⑴任...

  • w
    初一数学下册知识点归纳(热门6篇)

    发布时间:2025-01-16

    总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,快快来写一份总结吧。如何把总结做到重点突出呢?以下是小编帮大家整理的初一数学下册知识点总结,仅供参考,大家一起来看看吧。初一数学下册知识点归纳 篇1基本平面图形1、直线的性质...

  • w
    最新初中数学必考知识点归纳大全(集合九篇)

    发布时间:2025-02-19

    上学期间,大家对知识点应该都不陌生吧?知识点有时候特指教科书上或考试的知识。你知道哪些知识点是真正对我们有帮助的吗?下面是小编收集整理的初中数学必学的知识点总结,仅供参考,欢迎大家阅读。初中数学必考知识点归纳大全 篇1第一章 丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括...

  • w
    2025高一数学知识点总结(非常全面)(精华十一篇)

    发布时间:2025-03-10

    总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它可以帮助我们有寻找学习和工作中的规律,让我们一起来学习写总结吧。那么总结有什么格式呢?下面是小编精心整理的高一数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。[year+3:100]高一数学知识点总结(非常全面) 篇1 ...

  • w
    高中数学知识点全总结:必背公式(范本12篇)

    发布时间:2025-04-10

    总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以使我们更有效率,为此要我们写一份总结。那么总结应该包括什么内容呢?下面是小编收集整理的高中数学知识点总结,希望对大家有所帮助。高中数学知识点全总结:必背公式 篇1(一)导数第一定义设函数y...

  • w
    初三物理知识点总结归纳(精华8篇)

    发布时间:2025-02-28

    漫长的学习生涯中,说到知识点,大家是不是都习惯性的重视?知识点在教育实践中,是指对某一个知识的泛称。为了帮助大家掌握重要知识点,下面是小编为大家收集的初三物理知识点总结,希望对大家有所帮助。初三物理知识点总结归纳 篇1第一章声现象知识归纳1、声音的发生:由物体的振动而产生。振动停止,发声...

  • w
    生物中考知识点归纳(收藏三篇)

    发布时间:2025-05-05

    生物中考知识点归纳 篇11.动物的呼吸(1)蚯蚓主要靠湿润的体壁呼吸;(2)草履虫主要靠表膜呼吸;(3)蝗虫的呼吸部位在胸部、腹部,而不是头部;呼吸器官是气管而非气门;(4)青蛙主要靠肺呼吸,皮肤辅助呼吸;(5)鸟类是双重呼吸,肺是呼吸的主要器官,气囊具有暂时贮存气体(辅助呼...

  • w
    中考生物知识点归纳总结(精品7篇)

    发布时间:2025-05-12

    中考生物知识点归纳总结 篇1中考生物知识点归纳总结 篇2细胞核在遗传中起到了主要作用,细胞核内含有遗传物质。细胞核中有染色体,染色体中有DNA,DNA上有遗传信息——基因(控制性状的最小单位)。中考生物知识点归纳总结 篇3(1)分类依据主要是生物的结构特征和生理特征①植物分类比较形态结构,被子植物中...